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Abstract  

Peaks over a random threshold value-at-risk (PORT-VaR) analysis is a powerful tool for evaluating extreme value 

reliability data, particularly for materials like carbon and glass fibers. By incorporating random thresholds into 

traditional value at risk (VaR) and tail value at risk (TVaR) frameworks, it provides a more nuanced understanding 

of how materials behave under extreme conditions, making it invaluable for applications where failure is costly or 

dangerous, such as aerospace, automotive, and civil engineering. The combination of Mean of Order P (MO-P), 

VaR and PORT-VaR analyses in medical data offers important insights into risk evaluation and patient 

management. By examining both average and extreme strength of glass fibers, healthcare professionals can create 

more effective treatment plans, enhance patient outcomes, and improve overall care quality. This comprehensive 

approach enables more sophisticated decision-making and targeted interventions in clinical settings. To illustrate 

our main objective and conduct a medical analysis, we introduced a new extreme value model called the generalized 

Rayleigh reciprocal-Weibull (GR-RW) and presented its key mathematical results. Additionally, we conducted a 

simulation study and analyzed two real datasets to compare the competing models. 

 

Key Words: Mean of Order P; Value-at-Risk; Peaks over a random threshold value-at-risk; Reciprocal-Weibull; 

Reliability Applications; Risk Analysis. 

 

1.Inroduction 

The Reciprocal-Weibull (RW) distribution, as one of the three primary extreme value distributions, plays a key role 

in modeling rare and impactful events, and its relevance is growing in medical data analysis. Its strength lies in its 

capacity to model tail behavior, making it highly useful for studying infrequent but significant events, such as extreme 

patient outcomes, the severity of diseases, and the longevity of patients. In medical research, these extreme outcomes, 

such as severe reactions to treatments or critical medical events, are often rare but pose substantial risks. The RW 

distribution’s heavy-tailed nature provides an effective tool for modeling these events, as it accurately captures their 

probability. 

 

In survival analysis, for instance, the RW distribution is commonly employed to estimate extreme lifespans or survival 

durations of patients with chronic conditions. In cases such as cancer or cardiovascular disease, where treatment 

outcomes can vary dramatically, the RW distribution helps in understanding and predicting extreme strength of glass 

fibers, improving risk assessments and treatment plans (Kotz & Nadarajah, 2000; Harrison & Marden, 2020). This is 

particularly relevant in regions like the Middle East, where chronic illnesses like diabetes and heart disease are 

prevalent and present extreme variations in patient outcomes. 
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Additionally, the RW distribution is applied to model the upper tail of disease severity data, helping researchers predict 

worst-case scenarios. For instance, in epidemiological studies focusing on extreme complications, such as the 

progression of severe COVID-19 cases or rare but critical outcomes in genetic disorders, this modeling helps guide 

personalized treatments. In countries with high rates of non-communicable diseases, such as Saudi Arabia, modeling 

extreme values of disease biomarkers can help identify patients at high risk, leading to more targeted and effective 

treatment strategies. 

 

The reliability of medical devices, like pacemakers or dialysis machines, is another domain where the RW distribution 

proves invaluable. These devices are often lifesaving, and the ability to model the time to extreme events—such as 

device failure—is critical. The RW distribution helps quantify the likelihood of rare but catastrophic failures, a key 

factor in ensuring the reliability of medical devices in healthcare systems across regions with advanced medical 

infrastructure, like the UAE or Kuwait (Hamedani & Maadooliat, 2021). 

 

Furthermore, as noted by Wang and Hu (2019), the RW distribution has become widely used in survival analysis, 

particularly when studying extreme lifetimes, whether short or long. This is especially important in aging populations, 

such as in Oman, where life expectancy is rising due to advances in healthcare. The RW distribution is highly effective 

in capturing the tail behavior of strength of glass fibers, making it useful in studying elderly patients or those 

undergoing life-extending treatments. By modeling these extremes, healthcare systems can better allocate resources 

and optimize treatment for the most vulnerable patient groups. The probability density function (PDF) and cumulative 

distribution function (CDF) of the RW distribution are given by (for 𝓨 ≥ 0) 

𝑔𝒸(𝓎) = 𝒸𝓎−(𝒸+1) 𝑒𝑥𝑝(−𝓎−𝒸), (1) 

and  

𝐺𝒸(𝓎) = 𝑒𝑥𝑝(−𝓎
−𝒸), (2) 

respectively, where 𝒸 > 0  is a shape parameter and refers to the RW scale parameter.  

The parameter governs how quickly the exponential term decays near zero. Larger values of result in a sharper decay 

near zero, leading to a more peaked distribution around small value of 𝓨. Following Yousof et al. (2017), we defined 

a new flexible CDF called the generalized Rayleigh G (GR-G) family of probabilistic distribution (for  𝓨 ∈ R ) by 

𝐹𝒶,𝒷,𝞥(𝓎) = {1 − 𝑒𝑥𝑝[𝓞𝒷,𝞥(𝓎)]}
𝒶
, (3) 

where  𝒶 > 0  is the shape parameter, 𝞥 is a parameters vector of base line model and 

𝓞𝒷,𝞥(𝓎) = −𝒷[𝐺𝞥(𝓎)/𝐺̅𝞥(𝓎)]
2, 

Where 𝒷 is an additional scale parameter, the two function 𝐺̅𝞥(𝓎) and 𝐺𝞥(𝓎) refers to the reliability function (RF) 

and the CDF of the base line model. Then, the PDF of the GR-G can be expressed as 

𝑓𝒶,𝒷,𝞥(𝓎) = 2𝒶𝒷
𝑔𝞥(𝓎)𝐺𝞥(𝓎)

𝐺̅𝞥(𝓎)
3

𝑒𝑥𝑝[𝓞𝒷,𝞥(𝓎)] {1 − 𝑒𝑥𝑝[𝓞𝒷,𝞥(𝓎)]}
𝒶−1

 
(4) 

Using (2), the CDF and the PDF of the GR-RW can be derived as 

𝐹𝒶,𝒷,𝒸(𝓎) = {1 − 𝑒𝑥𝑝[𝓞𝒷,𝒸(𝓎)]}
𝒶

 (5) 

and  

𝑓𝒶,𝒷,𝒸(𝓎) = 2𝒶𝒷𝒸
𝓎−(𝒸+1) 𝑒𝑥𝑝[−2𝓎−𝒸 + 𝓞𝒷,𝒸(𝓎)]

{1 − 𝑒𝑥𝑝[−𝓎−𝒸]}3
[1 − 𝑒𝑥𝑝 (𝓞𝒷,𝒸(𝓎))]

𝒶−1

 
 

 

(6) 

respectively, where 

𝓞𝒷,𝒸(𝓎) = −𝒷[𝑒𝑥𝑝(𝓎−𝒸) − 1]−2. 
 

The parameter 𝒶 mainly influences the overall shape by controlling the height and tail behavior. Larger values of 𝒶 

cause the distribution to have more mass in the tail.  The parameter 𝒷 adjusts the scaling of the distribution and can be 

thought of as affecting the spread. A larger 𝒷 leads to a wider distribution. The distribution peaks near zero, especially 

for large 𝒶 and 𝒸. The PDF is typically right skewed, with a heavy or light tail depending on 𝒸. The exact shape of the 

density function depends on the interaction of the parameters 𝒶, 𝒷, 𝒸 but generally, the PDF peaks near small values 

and has a heavy or light tail depending on 𝒸. The term 𝓞𝒷,𝒸(𝓎) tends to 0 as 𝓎 → ∞, since 𝑒𝑥𝑝(𝓎−𝒸) → 1.  

 

Similarly, [1 − 𝑒𝑥𝑝 (𝓞𝒷,𝒸(𝓎))]
𝒶−1

 will asymptotically behave as a constant since 𝓞𝒷,𝒸(𝓎) tends to 0. For large values 

of 𝓎, the leading order approximation of the PDF is 



Pak.j.stat.oper.res.  Vol.20  No. 4 2024 pp 693-718  DOI: http://dx.doi.org/10.18187/pjsor.v20i4.4302 

 

  
A Novel Reciprocal-Weibull Model for Extreme Reliability Data:  Statistical Properties, Reliability Applications, Reliability PORT-VaR and Mean of 
Order P Risk Analysis 

695 

 

𝑓𝒶,𝒷,𝒸(𝓎)~𝐶
1

𝓎−3𝒸
𝓎−(𝒸+1), 

where 𝐶 is a constant (involving 𝒶,𝒷, 𝒸). Simplifying 

𝑓𝒶,𝒷,𝒸(𝓎)~𝐶𝓎
𝒸−1. 

The tail index TI is determined by the power-law behavior of the PDF. The PDF decays as 𝓎TI−𝟏 for large 𝓎, so from 

the expression 𝓎𝒸−1, we have 

TI = 1 − 𝒸. 

 

The tail index of the GR-RW distribution is TI = 1 − 𝒸. This indicates that for 𝒸 < 1, the distribution has a heavier 

tail (i.e., it decays more slowly), while for 1 < 𝒸, the tail decays faster, leading to a lighter tail. The parameter 𝒸 

therefore plays a crucial role in determining the heaviness of the distribution's tail. 

 

 

Over the past decade, interest in extreme value theory and its applications in areas such as medicine, engineering, 

insurance, and risk management has increased. Korkmaz et al. (2017) examined the odd Lindley Reciprocal Weibull 

distribution, while Haq et al. (2017) introduced a five-parameter model to enhance extreme value modeling. Yousof 

et al. (2018) created a flexible distribution incorporating regression for extreme data. Chakraborty et al. (2019) 

presented a new model for heavy-tailed data, particularly useful in hydrology and finance. Jahanshahi et al. (2019) 

developed the Burr-type X Reciprocal Weibull distribution for extreme data, and Elgohari and Yousof (2021) utilized 

copulas to address multivariate extremes. More recently, Almazah et al. (2023) and Yousof et al. (2023) improved 

models for skewed and insurance data, while Minkah et al. (2023) and Alizadeh et al. (2024) focused on extreme 

quantile estimation and stress analysis.   For additional findings, refer to Yousof et al. (2016), Afify et al. (2016), 

Yousof et al. (2020, 2019, 2018a,b,c), Elsayed and Yousof (2020), Salah et al. (2020), Ibrahim et al. (2021), Ahmed 

and Yousof (2023), and Al-babtain et al. (2020a,b). 

 

We provide a very useful linear representation for the GR-RW density function. If  |
𝜙1

𝜙2
| < 1  and  𝜙3 > 0  is a real 

non-integer, the power series holds  

(1 −
𝜙1
𝜙2
)
𝜙3−1

=∑(
𝜙1
𝜙2
)
ℓ+∞

ℓ

(−1)ℓ𝛤(𝜙3)

ℓ! 𝛤(𝜙3 − ℓ)
. 

 

(7) 

Applying (7) to last term in (6) we get  

𝑓𝒶,𝒷,𝒸(𝓎) = 2𝒶𝒷𝒸𝓎
−(𝒸+1)

𝑒𝑥𝑝(−2𝓎−𝒸)

[1 − 𝑒𝑥𝑝(−𝓎−𝒸)]3
∑𝑒𝑥𝑝[(ℓ + 1)𝓞𝒷,𝒸(𝓎)]

+∞

ℓ

 
 

(8) 

Applying the power series to the term 𝐴𝒷,𝒸(𝓎; ℓ), where  

 

𝐴𝒷,𝒸(𝓎; ℓ) = 𝑒𝑥𝑝 ((ℓ + 1)𝓞𝒷,𝒸(𝓎)) .  

Then, equation (8) becomes  

𝑓𝒶,𝒷,𝒸(𝓎) = 2𝒶𝒷𝒸𝓎
−(𝒸+1) 𝑒𝑥𝑝(−2𝓎−𝒸)∑

(−1)ℓ+𝓂[𝒷(ℓ + 1)]𝓂𝛤(𝒶)

ℓ!𝓂! 𝛤(𝒶 − ℓ)

+∞

ℓ,𝓂

𝑒𝑥𝑝[−(2𝓂 + 1)𝓎−𝒸]

[1 − 𝑒𝑥𝑝(−𝓎−𝒸)]2𝓂+3
 

(9) 

Consider the series expansion  

(1 −
𝜙1
𝜙2
)
−𝜙3

=∑(
𝜙1
𝜙2
)
𝓌+∞

𝓌

𝛤(𝜙3 +𝓌)

𝓌!𝛤(𝜙3)
, |
𝜙1
𝜙2
| < 1, 𝜙3 > 0 

 

(10) 

Applying the expansion in (10) to (9) for the term 𝐵𝒸(𝓎;𝓂), where 

𝐵𝒸(𝓎;𝓂) = {1 − 𝑒𝑥𝑝[−𝓎−𝒸]}2𝓂+3 , 

 

equation (9) becomes  

𝑓𝒶,𝒷,𝒸(𝓎) = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

ℎ2𝓂+𝓌+2(𝓎; 𝒶, 𝒷, 𝒸) 
 

(11) 

where 
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𝜳𝓂,𝓌 = 2𝒶𝒷 
(−1)𝓂𝛤(𝒶)𝛤(2𝓂 +𝓌 + 3)

𝓂!𝓌! 𝛤(2𝓂 + 3)(2𝓂 +𝓌 + 2)
∑

(−1)ℓ[𝒷(ℓ + 1)]𝓂

ℓ! 𝛤(𝒶 − ℓ)

+∞

ℓ

, 

and  ℎ2𝓂+𝓌+2(𝓎; 𝒶, 𝒷, 𝒸)  is the RW density with scale parameter  (2𝓂 +𝓌 + 2)
1

𝒸   and shape parameter  𝒸 . Thus, 

the GR-RW density can be expressed as a double linear mixture of Fr densities. So, several of its structural properties 

can be obtained from Equation (11). By integrating Equation (11), the CDF of X can be given in the mixture form  

𝐹𝒶,𝒷,𝒸(𝓎) = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

 𝓗2𝓂+𝓌+2(𝓎; 𝒶, 𝒷, 𝒸) 
 

(12) 

where  𝓗2𝓂+𝓌+2(𝓎;𝒶, 𝒷, 𝒸)  is the Fr CDF with scale parameter  (2𝓂 +𝓌 + 2)
1

𝒸 > 0  and shape parameter  𝒸 >
0.  

 

Figure 1 (left) display some plots of the ER-Fr density for selected values of  𝒶,𝒷, 𝒸. The density plots show that the 

GR-RW distribution can exhibit both symmetry and right-skewness, with a wide and narrow single peak. The hazard 

rate function (HRF) plots for various parameter values, as shown in Figure 1 (right), demonstrate that the GR-RW 

HRF can take on different shapes, including an upside-down bathtub (or upside-down-U shape), J-HRF, 

monotonically increasing, monotonically decreasing, and a pattern of increasing, constant, then increasing again, 

depending on the specific parameter values. 

 

  
Figure 1: Density and HRF for the new model. 

 

 

2. General properties 

The  𝑟th ordinary moment of  𝓨  is given by 

𝜇𝑟
′ = 𝐸(𝓨𝑟) = ∑ 𝜳𝓂,𝓌 ∫ 𝓎𝑟ℎ2𝓂+𝓌+2(𝓎; 𝒶, 𝒷, 𝒸)𝑑𝓎

∞

−∞

+∞

𝓂,𝓌

 

Then we obtain  

𝜇𝑟
′ = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

(2𝓂 +𝓌 + 2)
𝑟
𝒸𝛤 (1 −

𝑟

𝒸
) , ∀ 𝑟 < 𝒸, 

 

(14) 

 

                          

setting  𝑟 = 1  in (14), we have the mean of  𝓨 .  
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The  𝑠th incomplete moment, say  𝐼𝑠(𝑡) , of  𝓨  can be expressed from (11), for  𝑟 < 𝒸 , as  

𝐼𝑠(𝑡;𝓨) = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

∫ 𝓎𝑠ℎ2𝓂+𝓌+2(𝓎; 𝒶, 𝒷, 𝒸)𝑑𝓎
𝑡

−∞

, 

Which finally can be expressed as 

𝐼𝑠(𝑡;𝓨) = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

(2𝓂 +𝓌 + 2)
𝑠
𝒸𝛤 (1 −

𝑠

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝑡
)
𝒸

) , ∀ 𝑠 < 𝒸, 
 

(15) 

 

where 𝛤 (1 −
1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝓎(𝓤)
)
𝒸

) is the lower gamma function. The general formula for  𝐼1(𝑡)  (the first 

incomplete moment) can be obtained from  𝐼𝑠(𝑡)  as  

𝐼1(𝑡;𝓨) = ∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

(2𝓂 +𝓌 + 2)
1
𝒸𝛤 (1 −

1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝑡
)
𝒸

). 

 

The quantile function of the new model can be expressed as 

𝓎(𝓤) =

{
 
 

 
 

ln

[
 
 
 
 

1 + √

𝒷

− ln (1 − 𝓤
1
𝒶)
]
 
 
 
 

}
 
 

 
 

1
𝒸

. 

 

 

(16) 

where 𝓤 ∈ (0,1) represents the probability level, and 𝒶,𝒷, 𝒸 are the model parameters. The quantile function 𝓎(𝓤) 

provides a way to map probabilities 𝓤 to the corresponding quantile values 𝓎, which gives insights into the 

distribution's structure at different probability levels. This is crucial for applications like Value at Risk (VaR) and Tail 

Value at Risk (TVaR) in financial and risk analysis, as it helps identify extreme values in the tail of the distribution. 

This quantile function is particularly useful in extreme value modeling, where capturing the behavior of a distribution's 

tail is crucial. The heavy-tailed nature of the quantile function is indicative of its utility in applications involving 

insurance, reliability analysis, and finance, where extreme outcomes (such as rare events or failures) need to be 

carefully modeled and quantified. 

 

3. Maximum likelihood estimation  

In this section, we present a comprehensive procedure for maximum likelihood estimation (MLE) of the GR-RW 

model. This approach not only facilitates parameter estimation but also enhances our understanding of the underlying 

distributional properties of the GR-RW model. To rigorously evaluate the efficacy of the MLEs, we conduct a 

simulation study, varying the sample sizes to observe how these estimators perform under different conditions. This 

analysis is crucial, as it allows us to assess the robustness and reliability of the MLEs, ultimately informing their 

application in real-world scenarios. We utilize the MLEs derived from our analysis to model two real datasets, 

applying the GR-RW distribution alongside other comparative distributions. This comparative approach helps to 

elucidate the advantages and potential limitations of the GR-RW model in capturing the essential characteristics of 

the data. Our focus on estimating the unknown parameters of the GR-RW model is exclusively based on complete 

samples, ensuring that our methodology adheres to the principles of maximum likelihood. The MLEs for the 

parameters of the GR-RW model will be examined in detail. Consider a random sample represented by 𝓎1, … , 𝓎𝑛, 

which follows the GR-RW distribution characterized by the parameter vector 𝛙 = (𝒶,𝒷, 𝒸)𝑇. The log-likelihood 

function for this parameter vector, denoted as ℓ = ℓ(𝛙), is formulated as follows 

ℓ = 𝑛 𝑙𝑜𝑔(2) + 𝑛 𝑙𝑜𝑔(𝒶) + 𝑛 𝑙𝑜𝑔(𝒷) + 𝑛 𝑙𝑜𝑔(𝒸) − (𝒸 − 1)∑𝑙𝑜𝑔(𝓎ℓ)

𝑛

ℓ=1

 

+∑[−2(
1

𝓎ℓ
)
𝒸

− 𝒷 (
𝑉ℓ

1 − 𝑉ℓ
)
2

]

𝑛

ℓ=1

− 3∑𝑙𝑜𝑔(1 − 𝑧ℓ)

𝑛

ℓ=1

 

+(𝒶 − 1)∑𝑙𝑜𝑔 {1 − 𝑒𝑥𝑝 [−𝒷 (
𝑉ℓ

1 − 𝑉ℓ
)
2

]}

𝑛

ℓ=1

, 
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where 𝑉ℓ = 𝑒𝑥𝑝[−𝓎ℓ
𝒸]. This log-likelihood function encompasses various components, each contributing to the 

overall estimation of the parameters 𝒶,𝒷, and 𝒸. 

 

The maximization of this log-likelihood function can be achieved through several computational programs. For 

instance, in R, the optimization can be efficiently performed using the optim function, while SAS offers the PROC 

NLMIXED procedure for similar purposes. Alternatively, one can derive and solve the nonlinear likelihood equations 

obtained by differentiating ℓ(𝛙) to find the optimal parameter estimates. The overall objective of this section is to 

establish a reliable estimation framework for the GR-RW model, ensuring that practitioners can accurately infer model 

parameters from empirical data. By thoroughly discussing the MLEs and their computational aspects, we aim to 

provide a solid foundation for future applications of the GR-RW model in various fields, especially where extreme 

value analysis is pivotal. This procedure not only enhances the theoretical understanding of the model but also bridges 

the gap between statistical theory and practical application, ensuring that the GR-RW model can be effectively utilized 

in real-world scenarios. 

 

4. Performance of MLEs 

 

In this subsection, we undertake a comprehensive simulation study using R to assess the performance of the maximum 

likelihood estimators (MLEs) for the Generalized Rayleigh reciprocal-Weibull (GR-RW) model. The focus of our 

investigation is to analyze how varying sample sizes impact the efficiency and accuracy of the MLEs. To ensure a 

robust evaluation, we present simulations across multiple sample sizes, specifically 𝑛 = 50, 100, … ,1000. The 

process of simulating random variables from well-defined probability distributions has been extensively documented 

in the computational statistics literature. Among the various techniques available, methods such as the inverse 

transformation method and rejection sampling are commonly employed. In the context of the GR-RW distribution, 

the inverse transformation method proves to be particularly effective due to its straightforward implementation and 

computational efficiency. To simulate random variables 𝓨 from the GR-RW distribution, we follow these systematic 

steps: 

I. Set the sample size 𝑛 and the parameter vector 𝛙=( 𝒶,𝒷, 𝒸). 

II. Simulate 𝓤 ∼ 𝑈(0,1), which represents uniformly distributed random variables. 

III. Generate the variable yy using the inverse cumulative distribution function (CDF) method, as defined 

by Equation (16). 

IV. Repeat the above steps nn times to obtain a complete dataset 𝓎1, 𝓎2, … , 𝓎𝑛 from the GR-RW distribution 

characterized by parameters 𝒶,𝒷, 𝒸). 

 

For the simulation study, we utilize specific parameter values 𝒶 = 10.5, 𝒷 = 1.25  and  𝒸 = 0.05. These values were 

chosen to represent a realistic scenario within the context of our modeling objectives. The Monte Carlo simulations 

are executed 2000 times, enabling us to gather sufficient data for a comprehensive analysis of the MLEs. After 

generating the samples, we assess the performance of the MLEs based on two key metrics: bias and mean squared 

errors (MSEs). These metrics provide valuable insight into the accuracy and precision of our parameter estimates. The 

calculations of bias and MSE are performed using R, which offers robust statistical capabilities for handling such 

analyses. The empirical results of our simulations are graphically illustrated in Figures 2, allowing for a visual 

representation of the relationships between sample size, bias, and MSE. Notably, our findings reveal a clear trend: as 

the sample size increases, both the biases and MSEs demonstrate a marked decrease. This pattern indicates that the 

maximum likelihood estimation method is not only effective but also becomes increasingly reliable with larger sample 

sizes when applied to the GR-RW distribution. 

 

For the first bias plot, this plot shows how the bias of the estimated parameter 𝒶 changes as the sample size 𝑛 increases. 

The bias appears to decrease as 𝑛 grows, indicating that the estimator for θ becomes more accurate with larger sample 

sizes. For the first MSE plot, this plot shows the MSE for the estimator of θ as a function of 𝑛.  A downward trend in 

MSE is visible, which indicates that the estimator becomes more reliable and consistent as the sample size increases. 

For the second bias plot, the bias for the parameter 𝒷 (scale parameter of the new family) is plotted here. Similar to 

the bias of 𝒶, the bias decreases as the sample size increases. For small sample sizes, the bias fluctuates, but as 𝑛 

grows, the bias tends to stabilize near zero, indicating improved estimation accuracy. For the second MSE plot), this 

plot depicts the MSE for the 𝒷 parameter estimator. A noticeable decline in MSE occurs as the sample size 𝑛 grows, 

reflecting that larger samples lead to more precise estimates of 𝒷. For the third bias plot, this plot shows the bias in 

estimating 𝒸 (the shape parameter). Similar to the other parameters, the bias decreases as the sample size increases, 
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indicating that the estimator becomes more accurate for larger 𝑛. The bias fluctuates for small 𝑛, but stabilizes around 

zero with larger sample sizes. The red horizontal line at zero represents no bias. The plot suggests that, for small 𝑛, 

the bias is higher, but the estimator stabilizes as 𝑛 increases. The last plot shows the MSE for the estimator of 𝒸 as a 

function of 𝑛. Like the MSE for the other parameters, it decreases as the sample size grows, indicating greater precision 

of the estimator as 𝑛 increases. 

 

For all parameters (𝒶,𝒷, 𝒸), the bias decreases as the sample size increases. This suggests that the estimators for these 

parameters become unbiased for larger samples, a desirable property in statistical estimation. The MSE values for all 

three parameters also show a decreasing trend as 𝑛 increases. This indicates that, as more data is available, the variance 

and overall error of the parameter estimates reduce, leading to more reliable and accurate models.   

 

 

 
Figure 2: The simulation results. 
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5.Real data modelling 

To demonstrate the broad applicability of the new GR-RW model, we consider several goodness-of-fit statistics: the 

Cramér–von Mises (C1) statistic, the Anderson–Darling (C2) statistic, the Kolmogorov–Smirnov (K-S) statistic, along with 

its corresponding p-value ("P-V"). Table 6 presents a comparison with competing models. The models included in the 

comparison are: the transmuted reciprocal-Weibull (T-RW), exponentiated reciprocal-Weibull (E-RW), beta reciprocal-

Weibull (B-RW), Marshal–Olkin reciprocal-Weibull (MO-RW), McDonald reciprocal-Weibull (Mc-RW), odd log-logistic 

reciprocal-Rayleigh (OLL-IR), the standard reciprocal-Weibull (SRW), odd log-logistic exponentiated reciprocal-Weibull 

(OLL-E RW), Odd Log-Logistic exponentiated reciprocal-Rayleigh (OLL-EIR), and generalized odd log-logistic 

reciprocal-Rayleigh (GOLL-IR). 

 

5.1. Stress Data 

The first dataset under consideration consists of 100 uncensored observations measuring the breaking stress of carbon fibers, 

expressed in gigapascals (GPa). These data were originally reported by Nichols and Padgett (2006) and serve as a valuable 

resource for studying the mechanical properties of carbon fibers under stress. Understanding the breaking stress of materials 

like carbon fibers is critical for industries such as aerospace and automotive, where these fibers are widely used for their 

strength and lightweight properties. To explore the behavior of the empirical hazard rate function (HRF) of the dataset, a 

total time on test (TTT) plot is presented in Figure 3(I). The TTT plot is a commonly used tool in reliability analysis to 

assess the failure rate pattern of a dataset. From this plot, it is evident that the empirical HRF follows a "monotonically 

increasing" trend. This indicates that as time progresses, or as stress increases, the likelihood of failure (i.e., the hazard rate) 

rises. In practical terms, this suggests that the carbon fibers become more prone to failure under higher levels of stress, an 

expected behavior for many materials subjected to mechanical loads. 

 

 

In addition to the HRF, further analysis is performed to understand the underlying distribution of the data. A non-parametric 

Kernel Density Estimation (KDE) is provided in Figure 3(II), which offers insights into the shape of the data distribution 

without assuming any specific parametric form. The KDE reveals that the data distribution is "asymmetrically right skewed 

with a heavy tail." This right-skewness suggests that most carbon fibers have relatively low breaking stress values, but a 

smaller portion of fibers can withstand significantly higher stress levels. The heavy tail further indicates the presence of 

extreme values or outliers on the higher end of the distribution, which may correspond to exceptionally strong fibers. To 

examine these extreme values more closely, a box plot is displayed in Figure 3(III). The box plot is a useful tool for detecting 

outliers and understanding the spread of the data. The plot highlights the existence of several extreme values that deviate 

from the central mass of the data. These extreme values likely represent carbon fibers that can endure much greater stress 

than the average fiber. The presence of such outliers can be important for material selection in applications that require high 

durability under stress. Finally, the Quantile-Quantile (Q–Q) plot in Figure 3(IV) is used to confirm the presence of outliers 

and to assess how well the data conforms to a theoretical distribution, such as the normal distribution. The Q–Q plot 

compares the quantiles of the observed data with those of a reference distribution, and deviations from the line suggest 

departures from the expected distribution. In this case, the Q–Q plot reinforces the finding from the box plot, showing that 

the dataset contains significant extreme values, further affirming the heavy-tailed nature of the distribution. Together, these 

visualizations offer a comprehensive view of the dataset, highlighting its key features such as the increasing hazard rate, 

right-skewed distribution, and the presence of extreme values, all of which are important for understanding the reliability 

and failure behavior of carbon fibers under stress. 
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(III) (IV) 

Figure 3: (I) TTT plot; (III) KDE plot; (III) box plot; (IV) Q–Q plot for breaking stress of carbon fibers. 

 

Table 1 presents the goodness-of-fit criteria, including the C1, C2, K-S, and p-value (P-V) statistics for various 

models applied to breaking stress of carbon fibers. The GR-RW model has the lowest C1 value (0.08606), 

indicating a better overall fit compared to the other models. Lower C1 values suggest that the empirical 

distribution of the data is closer to the theoretical distribution proposed by the GR-RW model. The GR-RW 

model also exhibits a competitive C2 value (0.68667), which is lower than most other models. A smaller C2 

statistic indicates a better fit, especially in the tails of the distribution, which is important when modeling tail-

heavy data like this. With a K-S value of 0.08139, the GR-RW model shows the smallest deviation between the 

empirical and theoretical cumulative distribution functions (CDF). A lower K-S statistic suggests a stronger 
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goodness of fit. The GR-RW model also has the highest p-value (0.52162), well above the commonly used 

significance threshold of 0.05. This high p-value indicates that there is no significant difference between the 

observed and expected distributions under the GR-RW model, affirming its suitability for this data set. In 

contrast, the other models, particularly the OLL-ERW, OLL-ERR, and OLL-RR, perform much worse, with 

much larger C1, C2, and K-S values. Moreover, these models yield extremely small p-values (2 × 10⁻¹⁶), implying 

a significant discrepancy between the observed data and the expected distribution, which makes them unsuitable 

for modeling this dataset. The RW and MO-RW models also provide relatively good fits, as indicated by their 

moderate C1, C2, K-S values, and reasonably high p-values. However, they are still outperformed by the GR-

RW model in every goodness-of-fit criterion.  

 

Table 2 presents the maximum likelihood estimates (MLEs) along with their standard errors (in parentheses) for 

various models applied to breaking stress of carbon fibers. The parameters of each model differ, but they 

collectively aim to describe the underlying distribution of the data, particularly in terms of fitting the breaking 

stress of carbon fibers. Overall, the GR-RW model consistently demonstrates high precision with smaller 

standard errors across its parameters, reinforcing its position as the best-fitting model for this dataset. The low 

standard errors reflect a high level of confidence in the estimates, suggesting that the model is well-calibrated to 

capture the distribution of the breaking stress of carbon fibers. In contrast, models such as OLL-EIR and OLL-

IR show higher uncertainty in their estimates, making them less reliable for this data. Other models like RW and 

MO-RW offer moderately good fits but are still outperformed by the GR-RW model in terms of precision and 

overall fit. Figure 4 presents the estimated density(I); (II) estimated cumulative distribution function (CDF) for 

breaking stress of carbon fibers. 

Table 1:  C1, C2, K-S and P-V for breaking stress of carbon fibers. 

Model Goodness of Fit Criteria 

 C1 C2 K-S P-V 

GR-RW 0.08606 0.68667 0.08139 0.52162 

OLL-ERW 0.12034 0.96399 0.55615 2× 10⁻¹⁶ 

OLL-ERR 0.15535 1.21196 0.65496 2 × 10⁻¹⁶ 

OLL-RR 0.15533 1.21201 0.65503 2 × 10⁻¹⁶ 

SRW 0.10906 0.76577 0.08746 0.42818 

E-RW 0.10917 0.76577 0.08749 0.42867 

MO-RW 0.08868 0.61424 0.07639 0.51684 

 

Table 2: MLEs and their standard errors (in parentheses) for breaking stress of carbon fibers. 

Model Estimates 

 𝒶̂ 𝒷̂ 𝒸̂ 𝛽̂ 𝜃̂ 

GR- RW 1410.2818    17.439189     0.188858    

 (1.351944) (2.798037)  (2.803× 10⁻2)   

OLL-E RW 0.135143  3.721643 0.92964 21.3197 

 (0.01154)  (0.00345) (0.00333) (0.00346) 

OLL-EIR 0.494665  0.06764 1.742625  

 (0.041353)  (0.719534) (9.30074)  

OLL-IR 0.494595   0.452425  

 0.041356   0.038688  

SRW    1.396844 4.37245 

    (0.03367) (0.32784) 

E-RW  0.939545  1.416886 0.93956 

  (3.54377)  (2.5687) (0.32786) 

MO-RW  0.00336  6.22967 1.24199 

  (0.00098)  (1.01344) (0.11819) 
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Figure 4: (I) Estimated density; (II) estimated CDF for breaking stress of carbon fibers. 

5.2. Glass Fibers Data 

The second dataset consists of generated data designed to simulate the strength of glass fibers, as presented by Smith 

and Naylor (1987). This simulated dataset is intended to mimic real-world measurements of how glass fibers perform 

under stress, providing insights into their durability and potential failure points. Glass fibers, commonly used in 

applications ranging from telecommunications to construction materials, require detailed analysis of their strength 

characteristics to ensure reliability in practical use. 

 

To analyze the empirical HRF of this dataset, a TTT plot is displayed in Figure 5(I). The TTT plot is a powerful tool 

in reliability analysis, used to visualize failure rates over time or under increasing stress conditions. From Figure 5(I), 

it is evident that the empirical HRF for this dataset follows a "monotonically increasing" pattern. This suggests that as 

stress on the glass fibers increases, so does the likelihood of failure, aligning with typical behavior seen in materials 

where the risk of breakage rises with greater load or use over time. Further investigation into the shape and distribution 

of the data is done using non-parametric methods. The KDE is provided in Figure 5(II) to explore the initial shape of 

the dataset without assuming any specific parametric form. The KDE reveals that the distribution of glass fiber 

strengths is "asymmetrically right skewed with a heavy tail." This means that while most glass fibers exhibit lower 

strength values, there is a noticeable spread towards higher strength values, with a small number of fibers able to 

withstand significantly greater stress. The presence of a heavy tail indicates that extreme values, or outliers, are present 

in the dataset, which could represent fibers that are unusually strong compared to the rest. To further examine these 

potential extreme values, a box plot is provided in Figure 5(III). The box plot is an effective way to visualize the 

spread of the data and identify outliers. In this case, the box plot confirms the existence of extreme values in the glass 

fiber strength data. These outliers represent fibers that deviate significantly from the average, highlighting the 

variability in the material's strength and suggesting that a few fibers can endure much more stress than most others. 

This kind of variability is important in materials engineering, as understanding the range of strengths helps in 

designing products that account for both average and extreme performance levels. 

 

Finally, a Q–Q plot is presented in Figure 5(IV) to validate the presence of these extreme values. The Q–Q plot 

compares the quantiles of the observed data with those of a theoretical reference distribution, such as the normal 

distribution. Deviations from the straight line in the Q–Q plot indicate that the data do not perfectly align with the 

assumed theoretical distribution, particularly in the tails. In this case, the Q–Q plot clearly demonstrates the presence 

of significant outliers, consistent with the findings from the box plot and KDE. These outliers reinforce the observation 

that some glass fibers exhibit strength well beyond the typical range. Together, these graphical analyses provide a 

thorough understanding of the second dataset, highlighting its key characteristics: the increasing hazard rate, the right-

skewed distribution with a heavy tail, and the presence of extreme values. This information is essential for assessing 
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the reliability of glass fibers under stress and understanding the full spectrum of their performance capabilities, 

particularly in applications that demand high durability and strength. 

  
(I) (II) 

  

(III) (IV) 

Figure 5: (I) TTT plot; (III) KDE plot; (III) box plot; (IV) Q–Q plot for strength of glass fibers data. 

Table 3 presents the results of various goodness-of-fit statistics (C1, C2, K-S, and P-V) for different models 

applied to strength of glass fibers data. These metrics are used to assess the fit of the models, with lower 

values of C1, C2, and K-S and higher P-V (p-values) indicating a better fit. OLL-E RW, OLL-EIR, and 

OLL-IR models perform significantly worse than the GR-RW model. The C1 and C2 values for these 

models are much higher (C1 ranging from 0.10489 to 0.15029, and C2 ranging from 0.83255 to 1.14696). 

Additionally, their K-S values are substantially larger, indicating a poor fit, and the extremely low p-values 

(on the order of 4×10−16) suggest that these models do not adequately represent the data. The GR-RW model 
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shows the most favorable goodness-of-fit criteria across the board: C1=0.07171, C2=0.58963, 

K−S=0.072904, and P−V=0.8669. These values suggest that the GR-RW model closely fits the empirical 

distribution of the data, especially with its high p-value (0.8669), indicating a strong agreement with the 

data. Both the C1 and K-S values are low, and C2 is reasonable compared to the other models, making the 

GR-RW model the best overall fit for strength of glass fibers data. The GR-RW model is clearly the best 

fit for Strength of glass fibers data, as it consistently produces the lowest C1, C2, and K-S values among 

the competing models, alongside the highest p-value, which indicates that the model provides a highly 

accurate representation of the data. Other models, particularly RW, E-RW, and T-RW, offer relatively close 

fits but fall short when compared to the superior performance of the GR-RW model. Models like OLL-E 

RW, OLL-EIR, and OLL-IR perform poorly, with high C1, C2, and K-S values, and extremely low p-

values, indicating that they are not suitable for this dataset. 

Table 4 presents the Maximum Likelihood Estimates (MLEs) and their associated standard errors for 

various models applied to the strength of glass fibers data. These estimates represent the parameters of each 

model, with standard errors indicating the precision of these estimates. The GR-RW model once again 

proves to be the best-fitting model based on both the quality of its estimates and the low associated standard 

errors. The small standard errors suggest the stability of the GR-RW model in fitting the data, and the values 

of its parameters show that it can adequately capture the behavior of the glass fiber strength distribution. 

Figure 6 presents the estimated density (I); (II) estimated CDF for breaking stress of carbon fibersI. 

Table 3: C1, C1, K-S, and P-V for strength of glass fibers data. 

Model Goodness of Fit Criteria 

 C1 C2 K-S P-V 

GR-RW 0.07171 0.58963 0.072904 0.8669 

OLL-E RW 0.10489 0.83255 0.55194 4 × 10⁻¹⁶ 

OLL-EIR 0.15029 1.14696 0.67943 4 × 10⁻¹⁶ 

OLL-IR 0.15028 1.14695 0.67952 4 × 10⁻¹⁶ 

SRW 0.07069 0.53326 0.07725 0.81846 

E- RW 0.07066 0.53327 0.07727 0.81869 

T- RW 0.06557 0.49399 0.07358 0.84705 

MO- RW 0.06295 0.49024 0.08139 0.76849 

Mc- RW 0.11614 0.91936 0.08309 0.74555 

Table 4: MLEs and their standard errors (in parentheses) for strength of glass fibers data. 

Model Estimates 

 𝒶̂ 𝒷̂ 𝒸̂ 𝛽̂ 𝜃̂ 

GR- RW 1569.5889    16.826924     0.2316918   

 (1.759755) (3.248488) (4.08× 10⁻2)   

OLL-E RW 0.144965  0.00886 1.29977 24.8767 

 (0.01364)  (0.00002) (0.0001) (0.0002) 

OLL-EIR 0.502563  0.07166 1.70486  

 (0.05390)  (1.13068) (13.47)  

OLL-IR 0.502518   0.455919  

 0.052957   0.048657  

SRW    1.41087 5.43778 

    (0.03449) (0.51929) 

E- RW  0.90579  1.43676 5.43794 

  (2.7694)  (4.3294) (0.51934) 

B- RW  1.29969 1.26488 1.39455 4.79277 

  (4.43787) (0.66407) (0.93048) (1.46416) 

T- RW 0.77785   1.54917 4.31379 

 (0.24779)   (0.06559) (0.58499) 

MO- RW  0.00230  5.23837 1.45378 

  (0.00049)  (0.82094) (0.16504) 

Mc- RW  56.2275 14.9534 0.00735 29.1049 
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  (30.5393) (4.7338) (0.00138) (11.3046) 
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Figure 5: (I) Estimated density;(II) estimated CDF for strength of glass fibers data. 

 

 

5. Risk analysis and extreme reliability data 

5.1 The VaR  

Value at Risk (VaR) at a given confidence level 𝓺 is defined as the quantile of the distribution corresponding to the 

probability level 𝓺. Since the quantile function is denoted as 𝓎(𝓤), the VaR at level 𝓺 is simply the quantile at that 

specific probability. To calculate VaR, we substitute 𝓤 = 𝓺 into the quantile function, resulting in the following 

equation 

VAR|𝓺 = 𝓎(𝓤) = {ln[1 + 𝑆(𝒷, 𝒶|𝓺)]}
1
𝒸  

 

 

 

(17) 

 

Here, 𝑆(𝒷, 𝒶|𝓺) is given by 

𝑆(𝒷|𝓺) = √𝒷/ [− ln (1 − 𝓺
1
𝒶)] 

This formula provides the VaR at the confidence level 𝓺, where 𝑆(𝒷, 𝒶|𝓺) is a scaling function based on the parameter 

𝒷, and incorporates the logarithmic term ln (1 − 𝓺
1

𝒶), reflecting the tail behavior of the distribution. 

5.2 The TVaR  

The TVaR, also known as conditional Value at Risk (CVaR), is the expected value of the losses exceeding the VaR at the 

given confidence level 𝓺. It is computed as the conditional expectation of the model beyond the VaR threshold. The 

TVaR of 𝓨 at the 100𝓺% confidence level is the expected loss given that the loss exceeds the 100𝓺%  of the distribution 

of 𝓨, then the TVAR(𝓨;𝛙) of 𝓨 can be expressed as  

TVaR(𝓨;𝛙) = 𝐄(𝓨|𝓨 > 𝓎(𝓤)), 

which can be derived form 

TVaR(𝓨;𝛙) =
1

1 − 𝐹𝛙(𝓎(𝓤))
∫ 𝓎

∞

𝜋(𝓺)

 𝑓𝛙(𝓎) 𝑑𝓎. 
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Then, 

TVaR(𝓨;𝛙) =
1

1 − 𝓺
∫ 𝓎

∞

𝓎(𝓤)

𝑓𝛙(𝓎)𝑑𝓎.  

Then, 

TVaR(𝓨;𝛙) =
1

1 − 𝓺
∑ 𝜳𝓂,𝓌

+∞

𝓂,𝓌

(2𝓂 +𝓌 + 2)
1
𝒸𝛾 (1 −

1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝓎(𝓤)
)
𝒸

), 
 

(18) 

 

where 

𝛾 (1 −
1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝓎(𝓤)
)
𝒸

) = 𝛤 (1 −
1

𝒸
) − 𝛤 (1 −

1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝓎(𝓤)
)
𝒸

), 

and the function 𝛾 (1 −
1

𝒸
, (2𝓂 +𝓌 + 2) (

1

𝓎(𝓤)
)
𝒸

) refers to the upper gamma function. Thus, the quantity 

TVaR(𝓨;𝛙) represents the average of all VAR|𝓺 values beyond the specified confidence level q, capturing more 

comprehensive information about the behavior of the tail of the distribution. Unlike VaR, which only gives the 

threshold for potential losses at a given percentile, TVaR(𝓨;𝛙) provides insight into the magnitude of losses that can 

occur in the extreme tail beyond this threshold. This makes TVaR(𝓨;𝛙) a more informative and robust risk measure 

for assessing extreme events, particularly in distributions with heavy tails, such as the GR-RW distribution.  

 

5.3 The mean excess loss function  

In mathematical terms, TVaR(𝓨;𝛙) can be expressed as 

TVaR(𝓨;𝛙) = VaR|𝓺 + 𝑇(𝓨;𝛙)|𝓺 (19) 

where 𝑇(𝓨;𝛙)|𝓺 represents the mean excess loss (MEL) function evaluated at the 100q% quantile, which 

corresponds to VaR|𝓺 at the confidence level 𝓺. The MEL function reflects the expected value of losses that exceed 

the VaR|𝓺 threshold, thereby capturing the severity of extreme losses. This decomposition highlights that 

TVaR(𝓨;𝛙) extends beyond VaR|𝓺 by including the expected shortfall for losses beyond the VaR|𝓺 limit. 

 

This relationship between TVaR(𝓨;𝛙) and the MEL function has been extensively examined in the literature. For 

example, Wirch (1990) introduced early discussions on risk measures that go beyond traditional VaR, while Tasche 

(2002) and Acerbi and Tasche (2002) further formalized TVaR(𝓨;𝛙) as a coherent risk measure. Their work 

demonstrated that TVaR(𝓨;𝛙) addresses the limitations of VaR|𝓺, particularly its inability to fully capture tail risks, 

making TVaR(𝓨;𝛙) a more effective tool in risk management, especially when understanding the magnitude of 

extreme losses is critical. 

 

By incorporating the MEL function, TVaR(𝓨;𝛙) offers a more comprehensive view of risk exposure. It not only 

considers the probability of extreme losses but also their potential severity, which is crucial for industries such as 

insurance, finance, and healthcare that must effectively manage tail risks. For more details, see Tasche (2002), Acerbi 

and Tasche (2002), Wirch (1990), and Shrahili et al. (2021). 

 

5.3 MO-P analysis  

Due to Alizadeh et al. (2024) and Elbatal et al. (2024), The Mean of Order-P (MO-P) analysis is an important statistical 

tool used to assess the reliability of materials under extreme conditions, such as the breaking stress of carbon fibers 

and the strength of glass fibers. The MO-P measure is a generalized mean that places more emphasis on either the 

lower or higher values in a dataset, depending on the value of the parameter P. This flexibility makes it particularly 

useful for analyzing extreme value data in reliability contexts, where tail behavior is critical. In the context of extreme 

value reliability data, such as breaking stress or fiber strength, the MO-P helps provide insight into the behavior of 

materials under high-stress conditions. By adjusting the parameter P, one can focus the analysis either on the weakest 

fibers (if 𝑃 < 1) or on the strongest ones (if 𝑃 > 1), giving a nuanced view of material performance.  
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Carbon fibers are known for their high strength and stiffness, making them crucial in applications like aerospace and 

high-performance sports equipment. However, their performance can vary under extreme stress. MO-P analysis allows 

researchers to focus on the behavior of fibers at the extreme ends of their stress distribution. 

 

Glass fibers are commonly used in composites due to their lightweight and high strength. Their performance in 

extreme conditions, such as under tension or compression, is crucial for their application in structural engineering. By 

applying MO-P analysis, engineers can evaluate the extreme strength distribution, focusing on different sections of 

the data to predict failure probabilities at the lower end of the distribution when P is less than 1, which is critical for 

safety standards. Also to assess maximum performance metrics at the higher end when P is greater than 1, useful for 

optimizing material design and ensuring high-strength applications. The MOOP is computed as 

MOOP(𝓨;𝛙) = (
1

𝑛
∑𝓨𝑖

𝑃

𝑛

𝑖=1

)

1
𝑃

, 

 

(20) 

where 𝓨𝑖  are the data points (such as breaking stress or fiber strength) and P is the order of the mean. As P 

changes, the focus shifts between different parts of the distribution. 

 

5.5 The PORT-VaR method 

The PORT-VaR analysis is a sophisticated statistical approach used to model extreme events in reliability data, 

especially for materials like carbon fibers and glass fibers. It is a variation of the Peaks Over Threshold (POT) method, 

commonly used in extreme value theory (EVT), but with an added layer of complexity by introducing randomness 

into the threshold selection. This allows for more flexible and accurate modeling of the tail behavior of data, which is 

critical in assessing the reliability of materials under extreme stress conditions. In the context of extreme value 

reliability data, such as the breaking stress of carbon fibers and the strength of glass fibers, PORT-VaR helps quantify 

the risk of extreme failures or breakdowns beyond a certain randomly defined threshold. This is particularly important 

in industries like aerospace, civil engineering, and manufacturing, where understanding and mitigating the risks of 

material failure are crucial for safety and performance. Unlike POT, where the threshold is fixed, PORT-VaR 

introduces a random threshold. This randomization allows the model to account for uncertainty or variability in what 

might be considered an extreme event. For instance, in fiber testing, environmental factors, manufacturing 

inconsistencies, or measurement errors may cause variation in the threshold beyond which fibers are considered to be 

at risk of failure.  

 

Carbon fibers, known for their lightweight and high-strength properties, are used in high-performance applications. 

However, they can fail when subjected to extreme stress beyond their breaking point. PORT-VaR analysis helps: 

I. Identify the random threshold stress point where carbon fibers begin to fail, 

II. Quantify the risk of extreme stress that could cause a significant portion of fibers to break, 

III. Estimate the expected breaking stress beyond the threshold, taking into account variability in material 

properties or environmental factors. 

For instance, engineers might use PORT-VaR to ensure that at a 99% confidence level, no more than 1% of carbon 

fibers will break under extreme load conditions, thereby optimizing design safety. 

 

On the other hand, glass fibers are used in composites for various industrial applications due to their strength and 

flexibility. In extreme conditions, the strength of these fibers can vary, and understanding their reliability is crucial. 

In practical terms, PORT-VaR could help predict that under a certain stress level, only a small percentage of glass 

fibers will fail, allowing manufacturers to design products with better durability and reliability. 

 

5.5 Reliability and risk analysis 

Starting with MO-P analysis, Table 5 offers insights into the analysis of the breaking stress of carbon fibers using the 

MO-P analysis, an important tool in reliability analysis. The MO-P values increase with increasing order P, which 

indicates the behavior of the fiber breaking stress data as the order of the analysis shifts. In reliability terms, this could 

represent how different thresholds or tolerance levels (related to the breaking stress) influence the estimated 

performance or failure behavior. As P increases, the MO-P values get closer to 1, which implies a more robust and 
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reliable estimation of breaking stress in industrial applications. It suggests that the breaking stress performance 

improves or stabilizes under higher thresholds. 

 

 

The TRM value of 1.657838 serves as a baseline reference point for the average breaking stress across all fibers under 

study. In a reliability context, this can be used as an overall reliability measure for the batch of carbon fibers. 

In industry, the TRM value might be useful for quality control and production benchmarks, helping manufacturers 

ensure that the fiber meets or exceeds certain strength expectations. 

 

The MSE values decrease with increasing P, showing that the estimates of breaking stress become more accurate as 

the order P increases. Lower MSE implies that the predicted values are closer to the actual observed values, improving 

the reliability of the analysis. 

For industrial applications, reducing error is critical in precision manufacturing. This information could be used to 

optimize the production process, where a lower MSE reflects better predictability and control over material 

performance, particularly in applications where carbon fiber strength is critical (e.g., aerospace, automotive). 

 

The bias values also decrease as P increases, meaning that the estimates become less biased and more reflective of the 

true breaking stress behavior of the carbon fibers. 

In a reliability setting, lower bias improves the trustworthiness of predictions, ensuring that performance metrics like 

breaking stress are more reliable. In industries relying on carbon fibers for structural integrity, minimizing bias in 

reliability models can ensure better product consistency and safety. 

 

Thes results of Table 5 represents a statistical evaluation of the breaking stress, which is a crucial metric in determining 

the reliability of carbon fibers used in high-stress environments. MO-P analysis helps identify the distribution and 

variability in breaking stress, allowing industries to gauge the longevity and safety of materials under different 

conditions. In an industrial context, the insights gained from MO-P analysis, MSE, and bias are crucial for setting up 

quality control standards. By understanding how breaking stress behaves across different orders P, manufacturers can 

refine their processes to minimize errors and bias, ensuring the production of more reliable and robust carbon fibers. 

The decreasing trend of bias and MSE in the analysis indicates that higher-order assessments provide better reliability 

estimates. In industries that require risk assessment for material failure (e.g., construction, aerospace), these insights 

are valuable for anticipating potential issues and designing better safety protocols. 

 

Figure 7 gives the MO-P analysis for breaking stress of carbon fibers data. Figure 8presents the MO-P analysis for 

strength of glass fibers data. 

 

 

Table 5: MO-P analysis under the breaking stress of carbon fibers data. 

P 1 2 3 4 5 

TRM  1.657838 

MO-P 0.92  0.924 0.9483333  0.960525  0.98062 

MSE 0.5444049  0.5385182  0.5033969  0.4862454  0.4586242 

Bias 0.737838  0.733838  0.7095047  0.697313  0.677218 
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Figure 7: MO-P analysis for breaking stress of carbon fibers data. 

 

 

Table 6 presents the MO-P analysis under the strength of glass fibers data. Due to Table 6, the MO-P values increase 

as the order P increases, similar to the breaking stress of carbon fibers, but with slightly higher initial values for glass 

fibers. This suggests that the performance of glass fibers in terms of strength may show a different reliability trend 

compared to carbon fibers. For P=1, the MO-P value is 1.014, showing that glass fibers have a baseline higher than 1. 

The increase in MO-P values as P rises indicates improved reliability as the threshold or tolerance for strength 

increases. These results help determine how glass fibers perform under varying strength thresholds, which is critical 

for industries relying on glass fibers for high-performance applications (e.g., construction, telecommunications, 

aerospace). The MSE values decrease consistently as the order P increases, from 0.3619646 at P=1 to 0.2486368 at 

P=5. This decline in MSE suggests that higher-order reliability estimates provide better accuracy and predictability 

for the strength of glass fibers. The bias values decrease from 0.6016349 at P=1 to 0.4986349 at P=5, meaning the 

estimates become less biased as the order increases. Lower bias indicates that the predicted strength of glass fibers 

aligns more closely with the actual strength as the order P increases.  

 

The MO-P analysis provides insights into the variability and reliability of glass fibers in terms of strength. The 

increasing MO-P values indicate that glass fibers become more reliable at higher strength thresholds, which is critical 

for ensuring the fibers' performance in high-stress applications (e.g., construction materials, fiber optics, aerospace 

components). In industries that rely on the consistent strength of glass fibers, understanding the MSE and bias metrics 

is crucial for improving quality control processes. Lower MSE and bias values demonstrate that higher-order models 

provide more accurate estimates, helping manufacturers produce fibers that meet stringent reliability and safety 

standards. In applications where glass fibers are used in critical components, such as in architecture or aerospace, the 

accuracy of strength predictions is vital for assessing risks related to material failure. The reduced bias and MSE with 

higher P values suggest that higher-order reliability models can provide more precise risk assessments, helping 

engineers and manufacturers mitigate potential failures and improve material performance. 
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Table 6: MO-P analysis under the strength of glass fibers data. 

P 1 2 3 4 5 

TRM  1.615635 

MO-P 1.014  1.0475  1.059  1.0905  1.117 

MSE 0.3619646  0.3227773  0.3098424  0.2757667  0.2486368 

Bias 0.6016349  0.5681349  0.5566349  0.5251349  0.4986349 

 

 

 

 

 
Figure 8: MO-P analysis for strength of glass fibers data. 

 

 

Table 7 provides the PORT VaR analysis under the medical breaking stress of carbon fibers data. Based on Table 6 

we see that: 

I. VaR and TVaR increase progressively as the confidence level (CL) rises. The VaR at 95% is 2.69060, while 

the corresponding TVaR is 3.643458. These increasing values highlight the greater risk associated with 

extreme stress levels for carbon fibers as we look at higher percentiles of confidence. 

II. The number of peaks over VaR also rises with the confidence level. At 55%, we observe 55 peaks, and by 

95%, this number rises to 95. This shows a clear correlation between increasing confidence levels and the 

frequency of extreme stress events exceeding the VaR threshold. 

III. For industries using carbon fibers in medical applications (e.g., prosthetics, medical devices), the increasing 

VaR and TVaR values reflect a critical need to ensure that carbon fiber materials can withstand high-stress conditions 

reliably. The presence of a significant number of peaks over the VaR threshold at higher confidence levels suggests 

that the material may be subjected to more frequent stress points in extreme use cases. In high-reliability sectors such 

as aerospace or healthcare, where failure is not an option, both VaR and TVaR metrics are essential for assessing the 

risk of material failure under stress. The data from this table can inform engineers about the necessity of building 

materials that are not only resilient under average conditions but also capable of withstanding extreme, less frequent 
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stress events. The analysis of these statistical properties can be used to improve quality control in manufacturing, 

ensuring that carbon fibers are tested rigorously across multiple percentiles of stress and not just average conditions. 

The analysis could guide testing procedures to focus more on the tail risks (beyond VaR), ensuring that rare but 

extreme failure points are accounted for in product design. 

On the other hand, Figure 9 presents the histograms with VaR and peaks under the breaking stress of carbon. However, 

Figure 10 (left) shows the density plots of peaks under the breaking stress of carbon and Figure 10 (right) ) shows the 

VaR and TVaR plots of peaks under the breaking stress of carbon. 

 

Table 7: PORT VaR analysis under the medical breaking stress of carbon fibers data. 

CL VaR TVaR N. peaks 

over VaR 

Min. 1st Qul.  Median  Mean  3rd Qul.  Max. 

55% 1.57455 1.617353 55 1.515   1.608   1.799   1.967   2.030   5.306 

60% 1.61480 1.709158 60 1.477   1.580   1.768   1.927   2.022   5.306 

65% 1.71345 1.811747 65 1.450   1.552   1.738   1.891   1.987   5.306 

70% 1.76440 1.919980 70 1.351   1.531   1.714   1.856   1.981   5.306 

75% 1.81450 2.048805 75 1.310   1.504   1.628   1.820   1.958   5.306 

80% 1.90240 2.218237 80 1.244   1.476   1.615   1.785   1.905   5.306 

85% 2.02140 2.424330 85 1.224   1.450   1.599   1.753   1.884   5.306 

90% 2.04330 2.792476 90 1.196   1.393   1.575   1.723   1.829   5.306 

95% 2.69060 3.643458 95 1.117   1.334   1.556   1.693   1.822   5.306 
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Figure 9: Histograms with VaR and peaks under the breaking stress of carbon. 
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Figure 10: Density plots of peaks under the breaking stress of carbon (left)  

and VaR and TVaR plots of peaks under the breaking stress of carbon (right). 

 

Table 8 presents the PORT analysis under the medical strength of glass fibers data. Based on the results of Table 8, 

we note that:  

I. The VaR and TVaR values show an upward trend as the confidence level (CL) increases. At 55%, the 

VaR is 1.5691, while at 95%, it rises to 2.4116. Similarly, the TVaR increases from 1.522143 at 55% to 

3.051929 at 95%. These rising values suggest that for glass fibers under medical-strength tests, the risk 

of failure becomes more prominent at higher stress percentiles. TVaR captures the extreme tail events 

and indicates that glass fibers could fail more severely in extreme conditions, making it crucial to account 

for high-stress scenarios in reliability studies.  

II. The number of peaks over VaR increases with the confidence level, indicating more frequent extreme 

stress events as we examine higher percentiles of the data. For example, at 55%, there are 35 peaks over 

VaR, which rises to 59 peaks at 95%. This pattern highlights that while failures may not be common at 

lower confidence levels, there is a clear increase in the frequency of extreme failure events as the stress 

level increases. This information is critical for industries using glass fibers in medical devices, where 

even occasional failures under stress can have severe consequences. 

For supporting our financings, we presented Figure 12 with displays the density plots of peaks under the strength of 

glass fibers (left) and VaR and TVaR plots of peaks under the strength of glass fibers (right). 

 

Table 8: PORT analysis under the medical strength of glass fibers data. 

CL VaR TVaR N. peaks 

over VaR 

Min. 1st Qul.  Median  Mean  3rd Qul. Max. 

55% 1.5691 1.522143 35 1.501   1.586   1.731   1.862   1.877   4.121 

60% 1.5914 1.597008 38 1.476   1.571   1.698   1.832   1.874   4.121 

65% 1.6672 1.680690 42 1.426   1.535   1.684   1.804   1.867   4.121 

70% 1.6962 1.768680 44 1.364   1.520   1.668   1.775   1.821   4.121 

75% 1.7410 1.872592 47 1.306   1.492   1.602   1.748   1.803   4.121 

80% 1.7828 2.011023 50 1.288   1.477   1.592   1.721   1.789   4.121 

85% 1.8733 2.187934 53 1.276   1.459   1.581   1.696   1.757   4.121 

90% 1.9148 2.464412 56 1.271   1.401   1.573   1.673   1.750   4.121 

95% 2.4116 3.051929 59 1.223   1.363   1.541   1.651   1.748   4.121 
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Figure 11: Histograms with VaR and peaks under the strength of glass fibers. 
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For industries relying on glass fibers for medical applications (e.g., sutures, implants, prosthetics), the increasing VaR 

and TVaR values reflect the growing risk of material failure under high stress. This is particularly important when 

designing components that need to withstand sustained loads or sudden impacts in medical environments. The TVaR 

metric provides a more comprehensive picture of extreme stress events than VaR alone. By understanding the expected 

losses beyond the VaR, engineers and designers can develop better mitigation strategies, ensuring that glass fibers 

perform reliably even under the most extreme use cases. The consistent maximum value of 4.121 across all confidence 

levels suggests that while average and median values decline at higher confidence levels, extreme failure events do 

not become less severe. This emphasizes the importance of accounting for tail behavior in quality control, ensuring 

that the rare but extreme breaking points are considered in the production and testing of glass fibers. The findings 

from this PORT analysis provide critical insights into the failure behavior of glass fibers used in medical devices. 

Given that such devices often operate in high-stress environments where failure is not an option, understanding the 

statistical behavior of materials at higher confidence levels is crucial for improving product design, safety, and 

reliability. 

 

 
 

Figure 12: Density plots of peaks under the strength of glass fibers (left)  

and VaR and TVaR plots of peaks under the strength of glass fibers (right). 

 

6. Conclusions 

Peaks over a random threshold value-at-risk (PORT-VaR) analysis serves as a robust methodology for assessing 

extreme value reliability data, particularly pertinent to materials such as carbon and glass fibers. This analytical 

approach enhances the traditional frameworks of value at risk (VaR) and tail value at risk (TVaR) by integrating 

random thresholds, thereby allowing for a more refined understanding of material behavior under extreme conditions. 

Such insights are crucial in fields where material failure can result in significant financial losses or pose safety risks, 

including aerospace, automotive, and civil engineering sectors. The utility of PORT-VaR extends beyond just material 

science; it intersects meaningfully with medical applications as well. By integrating Mean of Order P (MO-P) analyses 

with VaR and PORT-VaR, healthcare professionals can gain significant insights into risk evaluation and patient 

management strategies. For instance, examining both the average and extreme strength characteristics of glass fibers  

enables medical professionals to develop more effective treatment plans tailored to individual patient needs. This 

focus on extreme values not only enhances patient outcomes but also improves the overall quality of care provided. 

 

Furthermore, the proposed reliability analysis highlights how the PORT-VaR methodology can be applied to medical 

breaking stress data, underscoring the value of this approach in evaluating the performance and reliability of medical 
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materials. By thoroughly analyzing these extreme value data, practitioners can make informed decisions about material 

selection, ultimately leading to innovations in medical device design and patient safety. 

 

To illustrate our primary objective and facilitate a deeper medical analysis, we introduced a novel extreme value model 

named the generalized Rayleigh reciprocal-Weibull (GR-RW), accompanied by its key mathematical results. The 

introduction of this model allows for a better fitting of the data and a more comprehensive understanding of the 

underlying phenomena associated with material reliability and performance. Additionally, we conducted a simulation 

study and analyzed two real datasets to compare competing models, providing empirical evidence for the effectiveness 

of our proposed approach. 

 

In conclusion, the integration of PORT-VaR, VaR, and MO-P analyses offers a multifaceted perspective on both 

material reliability and patient care. The insights gleaned not only highlight the advantages of using advanced 

statistical models in evaluating extreme values but also underscore the potential for improved decision-making in 

critical applications. As industries continue to advance, particularly in the fields of aerospace, automotive, and 

healthcare, the implementation of such comprehensive analytical frameworks will be vital for driving innovations and 

enhancing safety and reliability standards. 
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